高数~求切平面方程

高数~求切平面方程

题目
高数~求切平面方程
设函数F(u,v)具有一阶偏导数,且FU(0,1)=2 FV(0,1)=-3,则曲面方程F(X-Y+Z,XY-YZ+ZX)=0 在点(2,1,-1)处的切平面方程为()
A 2X+Y-Z+6=0 B 2X-11Y-Z+8=0
C 2X+Y-Z+8=0 D 2X-11Y-Z+6=0
答案
设G(x,y,z)=F(x-y+z,xy-yz+zx)求偏导数:Gx=Fu*1+Fv*(y+z),Gy=Fu*(-1)+Fv*(x-z),Gz=Fu*1+Fv*(x-y)代入x=2,y=1,z=-1,Fu=2,Fv=-3,得Gx=2,Gy=-11,Gz=-1所以切平面的法向量是(2,-11,-1),切平面方程是2(x-2)-11(y-1)...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.