是一道微积分的题目:已知y=f(x)连续、可导,且∫ f(x)dx=F(x)+C,y=g(x)为f(x)的连续的反函数,则∫g(x)dx
题目
是一道微积分的题目:已知y=f(x)连续、可导,且∫ f(x)dx=F(x)+C,y=g(x)为f(x)的连续的反函数,则∫g(x)dx
xg(x)-F(g(X))+C
答案
首先用分部积分:∫g(x)dx=x·g(x)-∫xd[g(x)]由题意,y=g(x)为f(x)的连续的反函数,即g(x)=f(x)的逆再换元:令t=g(x)=f(x)的逆,则 x=f(t)∫g(x)dx=x·g(x)-∫xd[g(x)]=x·g(x)-∫f(t)d[t]=x·g(x)-F(t)+C=x·g(x)-F(g...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点