一元二次方程ax²+bx²+c=0(a≠0)满足a-b+c=0,且有两个相等的实数根,下列结论正确的是 A a=c B a=b C b=c D
题目
一元二次方程ax²+bx²+c=0(a≠0)满足a-b+c=0,且有两个相等的实数根,下列结论正确的是 A a=c B a=b C b=c D
答案
ax²+bx+c=0
满足a-b+c=0
当x=-1时 a-b+c=0 b=a+c
有两个相等的实数根
所以 b²-4ac=0
(a+c)²-4ac=0
a²-2ac+c²=0
(a-c)²=0
a-c=0 a=c
所以选A
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点