已知在Rt△ABC,∠ACB=90°,AC=BC,D是BC的中点,CE⊥AD于E,BF‖AC交CE的延长线于F.试说明AB垂直平分DF

已知在Rt△ABC,∠ACB=90°,AC=BC,D是BC的中点,CE⊥AD于E,BF‖AC交CE的延长线于F.试说明AB垂直平分DF

题目
已知在Rt△ABC,∠ACB=90°,AC=BC,D是BC的中点,CE⊥AD于E,BF‖AC交CE的延长线于F.试说明AB垂直平分DF
答案
证明:CE是RT三角形ACD斜边上的高,所以∠FCB=∠CAD,又AC=CB,
由BF‖AC,所以∠CAB=∠ABF,ACB=∠CBF,所以三角形ACD全等于三角形CBF,所以BF=CD=DB,而∠CAB=∠ABF,∠ABF=∠CAB,所以∠ABF=∠CBA
所以AB垂直平分DF
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.