若G为三角形ABC的重心,P为平面上任一点,求证PG=1/3(PA+PB+PC)

若G为三角形ABC的重心,P为平面上任一点,求证PG=1/3(PA+PB+PC)

题目
若G为三角形ABC的重心,P为平面上任一点,求证PG=1/3(PA+PB+PC)
注意1:P为向量的起点,A、B、C、G为向量的终点.
注意2:不要用复数的方法求证
答案
由原式可以得出:GA+GB+GC=0向量,又GA=PA-PG,GB=PB-PG,GC=PC-PG,三式加得:GA+GB+GC=PA+PB+PC-3PG,即为:PG=1/3(PA+PB+PC).以上字母均为向量.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.