线性代数问题.设A为n阶实方阵,且AA^T = E,证明行列式 | A |= ±1.

线性代数问题.设A为n阶实方阵,且AA^T = E,证明行列式 | A |= ±1.

题目
线性代数问题.设A为n阶实方阵,且AA^T = E,证明行列式 | A |= ±1.
5.设A为n阶实方阵,且AA^T = E,证明行列式 | A |= ±1.
答案
证明:
A A^T=E
|A| |A^T|=|E|
|A|^2=1
| A |= ±1.
得证
性质1:|A|=|A^T|
性质2:若方阵AB=C 有|A||B|=|C|
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.