如图,△ABC中,AD是它的角平分线,P是AD上的一点,PE∥AB交BC与E,PF∥AC交BC与F.求证:D到PE的距离与D到PF的距离相等.
题目
如图,△ABC中,AD是它的角平分线,P是AD上的一点,PE∥AB交BC与E,PF∥AC交BC与F.求证:D到PE的距离与D到PF的距离相等.
答案
证明:∵PE∥AB,PF∥AC,
∴∠EPD=∠BAD,∠DPF=∠CAD,
∵△ABC中,AD是它的角平分线,
∴∠BAD=∠CAD,
∴∠EPD=∠DPF,
即DP平分∠EPF,
∴D到PE的距离与D到PF的距离相等.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点