导数的几何意义习题 x=t^2 y=e^t 求在t=1 处的切线方程

导数的几何意义习题 x=t^2 y=e^t 求在t=1 处的切线方程

题目
导数的几何意义习题 x=t^2 y=e^t 求在t=1 处的切线方程
答案
倒数的几何意义是该点切线的斜率.
已知直线参数方程,用微分解答,过程如下:
dx=d(t^2)=2tdt, dy=e^tdt 故dy/dx=(e^tdt)/(2tdt)=e^t/2t
t=1时,y=e, x=1 直线斜率dy/dx=e/2
故用点斜式求直线,得y-e=(x-1)×e/2
即ex-2y+e=0
若消去t求导,用高中的导数求法也可以得到斜率为e/2.
若有不懂,欢迎追问!
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.