求函数y=cos^2x-sin^2-√3cos(3π/2+2x)+1的周期,单调减区间和最值
题目
求函数y=cos^2x-sin^2-√3cos(3π/2+2x)+1的周期,单调减区间和最值
答案
y=cos^2x-sin^2-√3cos(3π/2+2x)+1
=cos2x-√3sin2x+1
=2cos(2x+π/3)+1
当2kπ+π/2≤2x+π/3≤2kπ+3π/2时,函数单调递减
2kπ+π/2≤2x+π/3≤2kπ+3π/2
2kπ+π/6≤2x≤2kπ+7π/6
kπ+π/12≤x≤kπ+7π/12
所以单调递减区间:[kπ+π/12,kπ+7π/12],k∈Z
最大值:ymax=3
最小值:ymin=-1
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点