设a,b是方程(logx)^2-lgx^2-2=0的两个根,求logaB+logbA的值
题目
设a,b是方程(logx)^2-lgx^2-2=0的两个根,求logaB+logbA的值
要有全部的过程
答案
a,b是方程(lgx)^2-lgx^2-2=0的两个根
即:
(lga)^2-2lga-2=0
(lgb)^2-2lgb-2=0
设m=lga,n=lgb
则:m^2-2m-2=0,n^2-2n-2=0
说明m,n是方程t^2-2t-2=0的二个根.
m+n=2,mn=-2
loga b+logb a=lgb/lga+lga/lgb=[(lgb)^2+(lga)^2]/(lga*lgb)
=[(m+n)^2-2mn]/(mn)
=[4-2*(-2)]/(-2)
=-4
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点