线性代数问题:设A是n阶反对称矩阵,证明(E-A)(E+A)^(-1)是正交矩阵.
题目
线性代数问题:设A是n阶反对称矩阵,证明(E-A)(E+A)^(-1)是正交矩阵.
注,(E+A)^(-1)表示(E+A)的逆
答案
证明:记 B=(E-A)(E+A)^-1注意到(E-A)(E+A)=E-A^2=(E+A)(E-A)和A^T=-A,有B^TB=((E+A)^-1)^T)(E-A)^T(E-A)(E+A)^-1=((E+A)^T)-1)(E-A)^T(E-A)(E+A)^-1=(E-A)^-1(E+A)(E-A)(E+A)^-1=(E-A)^-1(E-A)(E+A)(E+A)^-1=E...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点