设函数f(x)=n-1,x属于[n,n+1),n属于N,则满足方程f(x)=log2|x根的个数是 (2为底数,x为真数)

设函数f(x)=n-1,x属于[n,n+1),n属于N,则满足方程f(x)=log2|x根的个数是 (2为底数,x为真数)

题目
设函数f(x)=n-1,x属于[n,n+1),n属于N,则满足方程f(x)=log2|x根的个数是 (2为底数,x为真数)
请问为什么x要取n-1,而不取n-2呢
答案
在x∈[n,n+1)上考虑,令log2|x=n-1,则x=2^(n-1).
若x为方程f(x)=log2|x的根,则需2^(n-1)∈[n,n+1),即n
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.