n趋近于无穷大,(1+x^n(x^2/2)^n)^1/n的极限

n趋近于无穷大,(1+x^n(x^2/2)^n)^1/n的极限

题目
n趋近于无穷大,(1+x^n(x^2/2)^n)^1/n的极限
n趋近于无穷大,(1+ x^n+(x^2)/2)^n)^1/n的极限
答案
x应该满足 x>0 吧
若 02 ,则 0 < 2/x < 1,(2/x)^n → 0
lim(n→+∞) lnA 同除以 (x²/2)^n
= lim(n→+∞) [ (2/x)^n lnx + ln(x²/2) ] / [ 1/(x²/2)^n + (2/x)^n + 1 ]
= ln(x²/2)
∴lim(n→+∞) A = x²/2
综上,当 00
= max { 1,x,x²/2 }
★更一般的结论★(用夹逼定理即可证明)
lim(n→+∞) ( a₁^n + a₂^n + a₃^n +……)^(1/n) ,其中 ai >0
= max { a₁,a₂,a₃,……}
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.