设a,b,c为三角形ABC的三边,且(c-b)x2+2(b-a)x+a-b=0,有两个相等的实数根,求证三角形ABC为等腰三角形.

设a,b,c为三角形ABC的三边,且(c-b)x2+2(b-a)x+a-b=0,有两个相等的实数根,求证三角形ABC为等腰三角形.

题目
设a,b,c为三角形ABC的三边,且(c-b)x2+2(b-a)x+a-b=0,有两个相等的实数根,求证三角形ABC为等腰三角形.
答案
因为有两个相等的实数根,所以Δ=0
Δ=4(b-a)^2-4*(c-b)*(a-b)
=4(b-a)*(b-a+c-b)
=4(b-a)(c-a)
=0
所以
a=b或者c=a
因此
这个三角形是等腰Δ
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.