用拉格朗日中值定理证明arctanx-In(1+x^2)大于四分之π-In2

用拉格朗日中值定理证明arctanx-In(1+x^2)大于四分之π-In2

题目
用拉格朗日中值定理证明arctanx-In(1+x^2)大于四分之π-In2
答案
本题需要定义域为[1/2,1],否则结论不成立.f(x)=arctanx-ln(1+x^2),在【x,1】上用拉格朗日定理,存在y,使得f(x)-f(1)=f'(y)(x-1)=(1/!+y^2-2y/1+y^2)(x-1)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.