已知一元二次方程x2+px+q+1=0的一根为2 求q关于p的关系式求证:一元二次方程x2+px+q=0一点有两个不同的根
题目
已知一元二次方程x2+px+q+1=0的一根为2 求q关于p的关系式求证:一元二次方程x2+px+q=0一点有两个不同的根
答案
(1)由题意得22+2p+q+1=0,即q=-2p-5;
证明:(2)∵一元二次方程x2+px+q=0的判别式△=p2-4q,
由(1)得△=p2+4(2p+5)=p2+8p+20=(p+4)2+4>0,
∴一元二次方程x2+px+q=0有两个不相等的实根,
∴x2+px+q=0有两个不同的根;
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点