在正方体ABCD-A1B1CID1中,M为CC1中点,AC交BD于点O,求证A1O垂直与平面MBD

在正方体ABCD-A1B1CID1中,M为CC1中点,AC交BD于点O,求证A1O垂直与平面MBD

题目
在正方体ABCD-A1B1CID1中,M为CC1中点,AC交BD于点O,求证A1O垂直与平面MBD
因为OM与A1O同在面A1ACC1内,而且A1A:AO=OC:CM,所以A1O⊥OM.
于是,可以说明A1O⊥平面MBD。
为什么A1A:AO=OC:CM,A1O就垂直OM?
答案
证:∵ABCD是正方形,∴AC⊥BD.(正方形的对角线互相垂直).∴AO⊥BD (AO是AC的一部分).A1O是平面ABCD的一条斜线,O为斜足.A1A⊥平面ABCD,垂足为A.AO是斜线A1O在平面ABCD上的射影.∵AO⊥BD,∴A1O⊥BD.( 三垂线定理)...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.