高数极值和拐点的判断

高数极值和拐点的判断

题目
高数极值和拐点的判断
有一个函数f(x)=(|x|+1)/x,判断在x=1是不是f(x)的极值点,第一,首先我判断这是个连续函数,然后我用导数的定义来判断,当x趋向于1+和1-的两种情况,左右倒数一正一负,然后我就说是极值点,这样对么?第二,然后题目问(1,0)是不是拐点,怎么判断
这个答案是x=1,我觉得上面连续函数,下面也是连续函数明显f(x)是连续函数,所以只要证明是可导的,咋用定义求导得到左右极限都是0,所以可到,再由极限的第一充分条件说明有x=1有极限存在,我第一题就是想确定一下,而且(1,0)是拐点啊,= =
答案

有一个函数f(x)=(|x|+1)/x,判断在x=1是不是f(x)的极值点

定义域:x≠0.因为是要判断x=1是不是极值点,因此只研究x>0的情况.此时f(x)=(x+1)/x.

由于f'(x)=[x-(x+1)]/x²=-1/x²<0在(0,+∞)内恒成立,即f(x)=(x+1)/x=1+(1/x)在x>0时是单调递减

的函数,没有极值点.你可能没有打开绝对值符号就在那儿求导.事实上,在x>0时,|x|=x,故f(x)=(x+1)/x=1+(1/x)的图像是把反比例函数y=1/x的图像向上平移一个单位得到的,不可能有极

值点.

x<0时,f(x)=(-x+1)/x=-1+(1/x),是把反比例函数y=1/x在x<0时的图像向下平移一个单位得到的,因此在x<0时,该函数也没有极值点.其导数f'(x)=-1/x²<0在(-∞,0)内也恒成立.即在(-∞,0)

内也时减函数.

这个函数只有一个间断点x=0;在x<0和x>0时都是连续的,f'(1)=-1,f'(-1)=-1;x=1既非极值点

也不是拐点.x→-1limf'(x)=x→+1limf'(x)=f'(1)=-1;即在x=1处的左右导数都是-1.

f(x)=(|x|+1)/x的图像如下:


举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.