求 x^2+y^2+z^2=14 ,在点(3,2,1)处的切平面方程及法线方程?

求 x^2+y^2+z^2=14 ,在点(3,2,1)处的切平面方程及法线方程?

题目
求 x^2+y^2+z^2=14 ,在点(3,2,1)处的切平面方程及法线方程?
答案
令F(x,y,z)= x^2+y^2+z^2-14
Fx=2x,Fy=2y,Fz=2z
所以
n=(3,2,1)
从而
切平面方程为3(x-3)+2(y-2)+(z-1)=0
即 3x+2y+z=14.
法线方程为:(x-3)/3=(y-2)/2=(z-1)/1
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.