已知f(x)为R上奇函数当f∈(0,1)f(X)=lg(x+1)当x∈(-1,0)时f(X)等于?
题目
已知f(x)为R上奇函数当f∈(0,1)f(X)=lg(x+1)当x∈(-1,0)时f(X)等于?
答案
令x∈(-1,0)
则-x∈(0,1)
于是有f(-x)=lg(-x+1)
而因f(x)为R上的奇函数
则有f(-x)=-f(x)
所以-f(x)=lg(-x+1)
即f(x)=-lg(1-x)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点