在四边形ABCD中,DB平分∠ADC,∠ABC=120°,∠C=60°,∠BDC=30°,延长CD到点E,连接AE,使得∠C=2∠E.

在四边形ABCD中,DB平分∠ADC,∠ABC=120°,∠C=60°,∠BDC=30°,延长CD到点E,连接AE,使得∠C=2∠E.

题目
在四边形ABCD中,DB平分∠ADC,∠ABC=120°,∠C=60°,∠BDC=30°,延长CD到点E,连接AE,使得∠C=2∠E.
1.求证:四边形ABCD是平行四边形;
2.若DC=12,求AD的长.
答案
四边形ABCD是等腰梯形,四边形ABDE是平行四边形.这题是要证明四边形ABDE是平行四边形吧!
证明:1.∵∠ABC=120°,∠C=60°,∠BDC=30°,DB平分∠ADC
∴∠CBD=180°-∠C-∠BDC=90°,∠ABD=∠ABC-∠CBD=30°
∠E=(1/2)∠C=30°,∠EAD=∠ADC-∠E=∠ADB=30°
由∠ABD=∠BDC=30°,AB∥CD(内错角相等,两直线平行)
又∵在△EAD与△BDA中
∠ABD=∠DEA,∠ADB=∠DAE,AD=DA
∴△ABD≌△DEA(AAS),AB=DE
四边形ABDE是平行四边形(一组对边平行且相等)
2.∵∠C=∠ADC,且AB∥CD
∴四边形ABCD为等腰梯形,AD=BC
又∵∠CBD=90°,∠C=60°
∴CD=2BC
∴AD=6
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.