已知函数f(x)=log3(x/3)*log3(x/9),x∈[1/9,27],求f(x)的最大值

已知函数f(x)=log3(x/3)*log3(x/9),x∈[1/9,27],求f(x)的最大值

题目
已知函数f(x)=log3(x/3)*log3(x/9),x∈[1/9,27],求f(x)的最大值
答案
f(x)=log3 (x/3)*log3 (x^1/3²)
=(1/2)log²3 (x/3)
底数为3 大于1 所以log3 x是增函数
f(x)=(1/2)log²3(x/3)
log3 (x/3)=0 x=3
当x=3 函数单调增
所以 当x=1/9 或x=27时 有极大值
f(1/9)=9/2 f(27)=2
所以最大值为f(1/9)=9/2
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.