一道高二数列极限题
题目
一道高二数列极限题
在边长为R的正六边形内,依次连接各边中点得到一个正六边形,又在这个所得正六边形内,在依次连接各边中点得到一个正六边形,.,这样无限下去,设前N个正六边形边长总和为Sn,所有这些正六边形边长之和为S,所有这些正六边形面积之和为T.
求Sn,S,T
答案
第n个正六边形边长为6r*[(2分之根号3)的(n-1)次方]
Sn=6r*[(2分之根号3)的n次方-1]/[(2分之根号3)-1]
S=[(12倍根号3)+24]*r
T=(6倍根号3)*r方
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点