三角形面积公式证明,很难的一条公式,

三角形面积公式证明,很难的一条公式,

题目
三角形面积公式证明,很难的一条公式,
x1y1
x2y2
x3y3
分别是三点坐标,他们围成的面积是
1/2绝对值{(x1y2-x2y1)-(x1y3-x3y1)+(x2y3-x3y2)}
求证明
给个思路也可以
答案
设三角形三点为A(x1,y1,0)、B(x2,y2,0)、C(x3,y3,0)则面积=1/2|AB|*|AC|*sin(角A)=1/2*|向量(AB)×向量(AC)|而向量(AB)=(x2-x1)i+(y2-y1)j 向量(AC)=(x3-x1)i+(y3-y1)j其中i,j,k是xyz坐标系的三个方向的单位矢量(当...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.