设椭圆x^2/9+y^2/4=1 的两个焦点分别是F1F2,p为椭圆上一点,求丨向量PF1丨*|向量PF2|的最大值

设椭圆x^2/9+y^2/4=1 的两个焦点分别是F1F2,p为椭圆上一点,求丨向量PF1丨*|向量PF2|的最大值

题目
设椭圆x^2/9+y^2/4=1 的两个焦点分别是F1F2,p为椭圆上一点,求丨向量PF1丨*|向量PF2|的最大值
答案
由基本不等式,
2*丨向量PF1丨*|向量PF2|≤(丨向量PF1丨+|向量PF2|)^2=(2a)^2=4a^2=36
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.