设实数m,n满足4m^2+n^2=8,求√(m^2+n^2-4n+4)+√(m^2+n^2-4m-4n+8)的最小值.
题目
设实数m,n满足4m^2+n^2=8,求√(m^2+n^2-4n+4)+√(m^2+n^2-4m-4n+8)的最小值.
答案
根号(m^2+n^2-4n+4)+根号(m^2+n^2-4m-4n+8)
=根号[m^2+(n-2)^2]+根号[(m-2)^2+(n-2)^2]
由以上形式,可将题目可看成是求点(m,n)到(0,2)和(2,2)两点距离之和的最小值
由坐标图上可看出,当n=2且0
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点