证明矩阵总是为可逆矩阵

证明矩阵总是为可逆矩阵

题目
证明矩阵总是为可逆矩阵
证明((A^T)A+λI)总是一个可逆矩阵,其中λ总为正值
答案
考虑线性方程组[(A^T)A+λI]x=0,故有(A^T)Ax=-λx,即x为(A^T)A的对应于负特征值-λ的特征向量.又因为(A^T)A为半正定矩阵,其特征值均非负,所以x=0,所以矩阵(A^T)A+λI可逆.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.