设f(x)的定义域为(-∞,+∞),且对任何X,Y都有f(x+y)+f(x-y)=2f(x)f(y),且f(x)≠0,证明f(x)为偶函数.

设f(x)的定义域为(-∞,+∞),且对任何X,Y都有f(x+y)+f(x-y)=2f(x)f(y),且f(x)≠0,证明f(x)为偶函数.

题目
设f(x)的定义域为(-∞,+∞),且对任何X,Y都有f(x+y)+f(x-y)=2f(x)f(y),且f(x)≠0,证明f(x)为偶函数.
答案
令y=x有:f(2x)+f(0)=2f(x)f(x)
令y=-x有:f(0)+f(2x)=2f(x)f(-x)
由此得2f(x)f(x)=2f(x)f(-x)
因f(x)≠0,故f(x)=f(-x) 即f(x)为偶函数
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.