如何证明开普勒第二定律 用角动量守恒

如何证明开普勒第二定律 用角动量守恒

题目
如何证明开普勒第二定律 用角动量守恒
答案
开普勒第二定律又称面积定律,即相等时间扫过面积相等,也即掠面速度不变,证明这个定律的关键是弄清楚角动量和掠面速度的关系,即下面的(3)式.具体我就不写了,下面引用一位仁兄的写法.
开普勒第二定律:任一行星和太阳之间的联线,在相等的时间内扫过的面积相等,即掠面速度不变.
利用角动量守恒定律证明如下.
证明:行星在太阳的引力作用下绕日运动,所以行星受到的引力对太阳的力矩为零,即行星对太阳的角动量L守恒(为常矢量).L的大小为
L=r*m*v*sinp=常数 (1)
其中p是矢径r与行星速度v的夹角.
设在足够小的dt时间内,太阳到行星的矢径r扫过的角度很小,于是在dt时间内矢径r掠过的三角形的面积为
dS=0.5*r*v*dt*sinp
则矢径r掠过的面积速度为
u=dS/dt=(0.5*r*v*dt*sinp)/dt=0.5*r*v*sinp (2)
(2)式同(1)式对比可得
L=2m*u=常数 (3)
于是u即掠面速度是常数.
由此得证:由角动量守恒,行星运动的掠面速度不变.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.