已知四边形ABCD中,AC=BD,E、F、G、H分别为AB、BC、CD、DA中点,求四边形EFGH是菱形.
题目
已知四边形ABCD中,AC=BD,E、F、G、H分别为AB、BC、CD、DA中点,求四边形EFGH是菱形.
不用中位线定理
答案
证明:
∵E、F分别为AB、BC中点
∴BE/BA=BF/BC=1/2
又:角EBF=角ABC
∴△EBF∽△ABC
∴EF/AC=BE/BA=BF/BC=1/2
∴EF=1/2AC
同理:FG=1/2BD,GH=1/2AC,HE=1/2BD
又:AC=BD
∴EF=FG=GH=HE
∴四边形EFGH是菱形
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
- 在括号里填上大于小于或等于.
- 相反意义的量必须具有两个要素,一是它们的意义(),二是它们都具有是数量,通常把“上升”,“增加”规
- 唐人的一天 作文
- 求英文名字在线翻译
- a1>=b,a11>0,S14<=77求所有可能的数列{an}通响公式 (等差数列中)
- 一个数和12相乘的积比它和9相乘的积多45,这个数是多少
- 一个圆柱形玻璃缸,底面直径20厘米,把一个钢球放入水中,缸内水面上升了2厘米,求这个钢球的体积.(π取3.1)
- 已知:x2+y2=7,xy=-2.求7x2-3xy-2y2-11xy-5x2+4y2的值.
- 把4千克平均分成5份,每份是( ) a 5分之4千克 b 总重量的五分之四 c
- 一辆洒水车每分钟行65米,洒水宽度是8米,这辆洒水车沿直道行驶,每分钟洒水的面积是多少平方米?
热门考点