四边形ABCD中,AB=BC=CD,角ABC=90度角BCD=150度,求角BAD多少度?
题目
四边形ABCD中,AB=BC=CD,角ABC=90度角BCD=150度,求角BAD多少度?
答案
作BC和AB的垂线,那么交点为E,由已知条件可以得到AB=BC=CE=AE,并且ABCE组成一个正方形.
又由于AB=BC=CD,而且交BCD为150度,那么角DCE为60度并且三角形CDE为等边三角形,得到角CED为60,并且DE=CD=CE
由于角CEA为90,那么角AED为150,而AB=CD,DE=CD
得到三角形AED为等腰三角形,得到角DAE为15度,由此可得角BAD为75度
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点