证明方程sinx+x+1=0在开区间(-pi/2,pi/2)内至少有一个根?

证明方程sinx+x+1=0在开区间(-pi/2,pi/2)内至少有一个根?

题目
证明方程sinx+x+1=0在开区间(-pi/2,pi/2)内至少有一个根?
是一道本科的高等数学题 ··帮帮忙咯 ···
答案
运用根的存在定理呀,
引入辅助函数f(x)=sinx+x+1.它在[-pi/2,pi/2]上连续,
f(-pai/2)=-pai/20
根据根的存在定理,则在(-pi/2,pi/2)内至少存在一个数x使得f(x)=0成立.
x就是所求方程的一个根.
证毕.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.