证明 arctanx+arctan1/x=π/2 (x>0) 用中值定理

证明 arctanx+arctan1/x=π/2 (x>0) 用中值定理

题目
证明 arctanx+arctan1/x=π/2 (x>0) 用中值定理
答案
设f(x)=arctanx+arctan1/x,f(1)=arctan(1)+arctan(1)=π/2f'(x)=1/(1+x^2)+1/(1+(1/x)^2))*(-1/(x^2))=0对任意a>0,f(x)在[a,1](或[1,a])上连续,在(a,1)(或(1,a))上可导.根据中值定理:存在u,满足u在a与1之间,使得f'(...
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.