高一数学不等式难题求解

高一数学不等式难题求解

题目
高一数学不等式难题求解
已知a、b、c均为正实数,且满足a^2+b^2+c^2=1
求a^-2+b^-2+c^-2的最小值
答案为9 求过程
答案
a²+b²+c²=0
所以1/a²+1/b²+1/c²
=(1/a²+1/b²+1/c²)(a²+b²+c²)
=1+1+1+b²/a²+c²/a²+a²/b²+c/b²+a²/c²+b²/c²
算术平均大于等于几何平均
b²/a²+c²/a²+a²/b²+c/b²+a²/c²+b²/c²>=6(b²/a²*c²/a²*a²/b²*c/b²*a²/c²*b²/c²)的6次方根=1
所以1/a²+1/b²+1/c²>=1+1+1+6=9
所以最小值=9
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.