已知非零向量a,b满足|a|=2|b|,若函数f(x)=(1/3)x^3 +(1/2)|a|x^2+a*bx在R上有极值,设向量a,b夹角为θ,则
题目
已知非零向量a,b满足|a|=2|b|,若函数f(x)=(1/3)x^3 +(1/2)|a|x^2+a*bx在R上有极值,设向量a,b夹角为θ,则
cosθ的取值范围为( )
A、[1/2,1] B、(1/2,1]
C、[-1,1/2] D、[-1,1/2)
要过程详细的~~
答案
f '(x)=x^2+|a|*x+a*b ,
因为 f(x) 有极值,因此 f '(x)=0 有两个不相等的实根,
所以判别式为正数,即 |a|^2-4a*b>0 ,
因此 4|b|^2-4*2|b|*|b|*cosθ>0 ,
解得 cosθ
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点