已知向量a=(3-cos2(x+4/π),-2√2),b=(1,sinx+cosx),c∈[-3π/4,π/4],且a*b=8/9,求sin2x的值.
题目
已知向量a=(3-cos2(x+4/π),-2√2),b=(1,sinx+cosx),c∈[-3π/4,π/4],且a*b=8/9,求sin2x的值.
答案
a=(3-cos2(x+π/4) 应该是这样的吧
a*b=[3-cos2(x+π/4)]-2√2(sinx+cosx)
=2〔sin(x+π/4)-1〕^2
=8/9
sin(x+π/4)=5/3 (舍去)或sin(x+π/4)=1/3
sinx+cosx=√2/3 (sinx+cosx)^2=2/9 2sinxcosx=2/9-1=-7/9
即sin2x=-7/9
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点