证明三角形的三条高交于一点

证明三角形的三条高交于一点

题目
证明三角形的三条高交于一点
答案
因为
(AD:DB)*(BE:EC)*(CF:FA)=[(CD*ctgA)/[(CD*ctgB)]*[(AE*ctgB)/(AE*ctgC)]*[(BF*ctgC)/[(BF*ctgA)]=1,
所以三条高CD、AE、BF交于一点.
这个根本不是初中知识能解决的问题!
用高中的向量把,反正你也不知道
设ΔABC,三条高线为AD、BE、CF,AD与BE交于H,连接CF.向量HA=向量a,向量HB=向量b,向量HC=向量c.
因为AD⊥BC,BE⊥AC,
所以向量HA·向量BC=0,向量HB·向量CA=0,
即向量a·(向量c-向量b)=0,
向量b·(向量a-向量c)=0,
亦即
向量a·向量c-向量a·向量b=0
向量b·向量a-向量b·向量c=0
两式相加得
向量c·(向量a-向量b)=0
即向量HC·向量BA=0
故CH⊥AB,C、F、H共线,AD、BE、CF交于同一点H
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.