已知函数f(x)=(m-2)x2+(m2-4)x+m是偶函数,函数g(x)=-x3+2x2+mx+5在(-∞,+∞)内单调递减,则实数m等于(  ) A.2 B.-2 C.±2 D.0

已知函数f(x)=(m-2)x2+(m2-4)x+m是偶函数,函数g(x)=-x3+2x2+mx+5在(-∞,+∞)内单调递减,则实数m等于(  ) A.2 B.-2 C.±2 D.0

题目
已知函数f(x)=(m-2)x2+(m2-4)x+m是偶函数,函数g(x)=-x3+2x2+mx+5在(-∞,+∞)内单调递减,则实数m等于(  )
A. 2
B. -2
C. ±2
D. 0
答案
∵函数f(x)=(m-2)x2+(m2-4)x+m是偶函数,
∴m2-4=0,故m=±2,①
又∵函数g(x)=-x3+2x2+mx+5在(-∞,+∞)内单调递减,
∴g′(x)=-3x2+4x+m≤0在R上恒成立,故△≤0,即16+12m≤0,即m≤
4
3

由①②得m=-2,
故选B.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.