函数f(x)=(ax+b)/(x^2+1)是定义在(-∞,+∞)上的奇函数,且f(1/2)=2/5

函数f(x)=(ax+b)/(x^2+1)是定义在(-∞,+∞)上的奇函数,且f(1/2)=2/5

题目
函数f(x)=(ax+b)/(x^2+1)是定义在(-∞,+∞)上的奇函数,且f(1/2)=2/5
求第二问
判断f(x)在(-1,1)上的单调性,并用定义证明你的结论
答案
f(x)=(ax+b)/(1+x^2)
因为:f(x)是奇函数,
所以:f(0)=b=0,即:f(x)=ax/(1+x^2).
又因为f(1/2)=2/5
所以:a(1/2)/(1+(1/2)^2)=2/5
即:a(1/2)/(1+1/4)=a(2/5)=2/5
所以:a=1
所以,所求解析式为:f(x)=x/(1+x^2).
设x1<x2,且x1,x2∈(-1,1)
f(x2)-f(x1)=x2/(1+x2^2)-x1/(1+x1^2)
=[x2(1+x1^2)-x1(1+x2^2)]/[(1+x1^2)(1+x2^2)]
显然,上式中分母>0,我们只需考查分子.
分子=x2+x2(x1^2)-x1-x1(x2^2)
=(x2-x1)-x1x2(x2-x1)
=(x2-x1)(1-x1x2)
因为x1,x2∈(-1,1),所以x1x2<1,即:1-x1x2>0
又因为x1<x2,所以x2-x1>0
所以:当x2>x1时,f(x2)>f(x1)
即:在(-1,1)定义域内,f(x)是增函数.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.