已知函数f(x)=3sinωx+cosωx(ω>0),y=f(x)的图象与直线y=2的两个相邻交点的距离等于π,则f(x)的单调递增区间是 _.
题目
已知函数f(x)=
sinωx+cosωx(ω>0),y=f(x)的图象与直线y=2的两个相邻交点的距离等于π,则f(x)的单调递增区间是 ______.
答案
函数f(x)=3sinωx+cosωx=2sin(ωx+π6),因为y=f(x)的图象与直线y=2的两个相邻交点的距离等于π,函数的周期T=π,所以ω=2,所以f(x)=2sin(2x+π6),因为2kπ-π2≤2x+π6≤π2+2kπ k∈Z,解得x...
化简函数f(x)=
sinωx+cosωx为f(x)=2sin(ωx+
),y=f(x)的图象与直线y=2的两个相邻交点的距离等于π,求出函数的周期,推出ω,得到函数解析式,利用正弦函数的单调增区间求出函数的单调增区间.
由y=Asin(ωx+φ)的部分图象确定其解析式;正弦函数的单调性.
本题是基础题,考查由y=Asin(ωx+φ)的部分图象确定其解析式,注意函数的周期的求法,考查计算能力,正弦函数的单调增区间的求法,常考题型.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点