求下列微分方程的特解:dy/dx=y/2根号x,y|x=4=1
题目
求下列微分方程的特解:dy/dx=y/2根号x,y|x=4=1
答案
求下列微分方程的特dy/dx=y/(2√x),y|x=4=1
分离变量得dy/y=dx/(2√x);
两边取积分得lny=∫dx/(2√x)=√x+C
代入初始条件得0=2+C,故C=-2;
于是得原方程的特解为y=e^[(√x)-2]
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点