已知抛物线方程y=4x平方 ,直线L过p(-2,1),斜率为K,K为何值时,直线L与抛物线只有一个公共点

已知抛物线方程y=4x平方 ,直线L过p(-2,1),斜率为K,K为何值时,直线L与抛物线只有一个公共点

题目
已知抛物线方程y=4x平方 ,直线L过p(-2,1),斜率为K,K为何值时,直线L与抛物线只有一个公共点
有两个公共点,没有公共点?
求详解
答案
设直线L方程为y=kx+b
代入p点坐标:
-2k+b=1
所以b=2k+1
L的方程是y=kx+(2k+1)
L与抛物线y=4x^2只有1个交点,则交点M坐标(x,y)应同时满足以上两个方程,即:
4x^2=kx+(2k+1),整理后得
4x^2-kx-(2k+1)=0
此方程有唯一解,判别式应等于0
即:k^2+16(2k+1)=0
k^2+32k+16=0
(k+16)^2-240=0
k1=(4根号15)-16
k2=-(4根号15)-16
说明直线L的k值为以上两种值时,将与抛物线相切.
两个交点、没有交点的分析方法与此类似,也是从判别式上入手,相信你会做了吧
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.