“除平凡子群外无其他子群的群是素数阶循环群”怎样证明?
题目
“除平凡子群外无其他子群的群是素数阶循环群”怎样证明?
答案
沙发
证明:设群G无非平凡子群,a是G中的非单位元,则H=(a)是G的子群且H≠{e},所以G=H=(a),所以G是循环群.
如果G是无限群,因为G≌Z,但Z有无穷多个非平凡子群nZ,矛盾,G必是有限群.
不妨设G为n阶群,则G≌ Zn,考虑Zn中任一循环子群(a),a∈Zn且非单位元,因为Zn无非平凡子群,所以Zn=(a),故a和n互素,即(a,n)=1这对一切1
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点