解微分方程dy/dx=2x+y

解微分方程dy/dx=2x+y

题目
解微分方程dy/dx=2x+y
答案
特征方程为x-1=0,得特征根为1,因此y1=ce^x
设特解为:y*=ax+b
则y* '=a=2x+y*=2x+ax+b=(2+a)x+b
对比系数得:a=b,2+a=0,得:a=b=-2 即y*=-2x-2
所以通解为 :y=ce^x-2x-2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.