数列{an},a1=1,an=3^(n-1)+an-1,n>=2,求an通项公式,an中n是下标,

数列{an},a1=1,an=3^(n-1)+an-1,n>=2,求an通项公式,an中n是下标,

题目
数列{an},a1=1,an=3^(n-1)+an-1,n>=2,求an通项公式,an中n是下标,
答案
an=3^(n-1)+a(n-1)
an-a(n-1)=3^(n-1)
a(n-1)-a(n-2)=3^(n-2)
a(n-2)-a(n-3)=3^(n-3)
.
a2-a1=3
累加得:an-a1=3^(n-1)+3^(n-2)+...+3=(3^n -3)/2
an=3^n/2-1/2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.