已知关于x的方程x²+p1+q1=0与x²+p2+q2=0

已知关于x的方程x²+p1+q1=0与x²+p2+q2=0

题目
已知关于x的方程x²+p1+q1=0与x²+p2+q2=0
求证:当p1p2=2(q1+q2)时,这两个方程中至少有一个方程有实根
答案
假设两方程均无实根,即p1^2<4q1,p2^2<4q2
两不等式相乘,得p1^2*p2^2<16q1*q2
由不等式(a+b)^2≥4ab,则16q1*q2≤4(q1+q2)^2
p1^2*p2^2<4(q1+q2)^2
p1*p2<2(q1+q2)
与p1p2=2(q1+q2)矛盾
所以两个方程中至少有一个方程有实根.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.