如图,矩形ABCD的对角线AC、BD相交于点O,E、F分别是OA、OB的中点. (1)求证:△ADE≌△BCF; (2)若AD=4cm,AB=8cm,求CF的长.
题目
如图,矩形ABCD的对角线AC、BD相交于点O,E、F分别是OA、OB的中点.
(1)求证:△ADE≌△BCF;
(2)若AD=4cm,AB=8cm,求CF的长.
答案
(1)证明:∵四边形ABCD为矩形
∴AD=BC,OA=OC,OB=OD,AC=BD,AD∥BC
∴OA=OB=OC,∠DAE=∠OCB(两直线平行,内错角相等)
∴∠OCB=∠OBC
∴∠DAE=∠CBF
又∵AE=
OA,BF=
OB
∴AE=BF
∴△ADE≌△BCF;
(2)过点F作FG⊥CD于点G,
∴∠DGF=90°
∵四边形ABCD是矩形,
∴∠DCB=90°
∴∠DGF=∠DCB
又∵∠FDG=∠BDC
∴△DFG∽△DBC
∴
==由(1)可知F为OB的中点,
所以DF=3FB,得
=∴
==∴FG=3,DG=6
∴GC=DC-DG=8-6=2
在Rt△FGC中,
CF=
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程. 我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点
|