求证等腰三角形的底角不可能是直角 用反证法证明
题目
求证等腰三角形的底角不可能是直角 用反证法证明
答案
证明:假设等腰三角形的底角为直角
令在△ABC中,∠A=∠B为底角
∴∠A=∠B=90°
∴∠A+∠B=180°
∵∠A+∠B+∠C=180°
∴∠C=0°不成立
∴假设不成立
∴等腰三角形底角不可能是直角
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点