不定积分∫xe^(-2x)dx,
题目
不定积分∫xe^(-2x)dx,
答案
原式=(-1/2)*∫xd(e^(-2x))=(-1/2)*[xe^(-2x)-∫e^(-2x)dx=(-1/2)*xe^(-2x)+(1/2)*(-1/2)*e^(-2x)+c
=(-1/2)*xe^(-2x)-(1/4)e^(-2x)+c
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点