f(x+y)+f(x-y)=2f(x)f(y),对任意实数x,y恒成立,且f(1)≠f(2),求证:f(x)是偶函数.

f(x+y)+f(x-y)=2f(x)f(y),对任意实数x,y恒成立,且f(1)≠f(2),求证:f(x)是偶函数.

题目
f(x+y)+f(x-y)=2f(x)f(y),对任意实数x,y恒成立,且f(1)≠f(2),求证:f(x)是偶函数.
答案
此题常见解法是:
第一步:求一些特殊的值,那就需要代入了.
令x=y=0可得,2f(0)=2[f(0)]^2
得:f(0)=1或f(0)=0(这个得舍去 )
第二步:
令x=0,得
f(-y)+f(y)=2f(0)f(y)
即,f(-y)+f(y)=2f(y)
得:f(-y)=f(y)
所以,f(x)是偶函数
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.